1 A line L is parallel to $y=4 x+5$ and passes through the point $(-1,6)$. Find the equation of the line L in the form $y=a x+b$. Find also the coordinates of its intersections with the axes.

2 Find the coordinates of the point of intersection of the lines $y=5 x-2$ and $x+3 y=8$.

3 A is the point $(1,5)$ and B is the point $(6,-1)$. M is the midpoint of AB . Determine whether the line with equation $y=2 x-5$ passes through M .

4 Find the equation of the line which is perpendicular to the line $y=2 x-5$ and which passes through the point $(4,1)$. Give your answer in the form $y=a x+b$.

5 (i) Points A and B have coordinates $(-2,1)$ and $(3,4)$ respectively. Find the equation of the perpendicular bisector of AB and show that it may be written as $5 x+3 y=10$.
(ii) Points C and D have coordinates $(-5,4)$ and $(3,6)$ respectively. The line through C and D has equation $4 y=x+21$. The point E is the intersection of CD and the perpendicular bisector of AB . Find the coordinates of point E .
(iii) Find the equation of the circle with centre E which passes through A and B . Show also that CD is a diameter of this circle.

6 Find the equation of the line with gradient -2 which passes through the point $(3,1)$. Give your answer in the form $y=a x+b$.

Find also the points of intersection of this line with the axes.

7 Find the set of values of k for which the graph of $y=x^{2}+2 k x+5$ does not intersect the x-axis.

8

Fig. 10
Fig. 10 is a sketch of quadrilateral ABCD with vertices A $(1,5)$, B ($-1,1$), C $(3,-1)$ and $\mathrm{D}(11,5)$.
(i) Show that $A B=B C$.
(ii) Show that the diagonals AC and BD are perpendicular.
(iii) Find the midpoint of AC. Show that BD bisects AC but AC does not bisect BD.

9 Find the equation of the line which is perpendicular to the line $y=5 x+2$ and which passes through the point $(1,6)$. Give your answer in the form $y=a x+b$.

